更多>>精华博文推荐
更多>>人气最旺专家

刘震

领域:新闻在线

介绍:不过,中国现代国际关系研究院美国所学者孙成昊对参考消息网说,美俄关系受到历史性问题的牵扯及“通俄门”事件的影响,后者与特朗普的执政合法性及执政地位挂钩。...

王素莹

领域:九江传媒网

介绍:“不过,我老公觉得他现在学,有点太早了。尊龙青草青,尊龙青草青,尊龙青草青,尊龙青草青,尊龙青草青,尊龙青草青

凯时或尊龙账号大全
本站新公告尊龙青草青,尊龙青草青,尊龙青草青,尊龙青草青,尊龙青草青,尊龙青草青
8ed | 2019-07-20 | 阅读(697) | 评论(194)
H2O2+2Fe2++2H+=2Fe3++2H2O(2016全国1卷)(4)+6价Cr2O72-毒性较大,常NaHSO3将废液中的Cr2O72-还原成Cr3+,该反应的离子方程式为_______________________________________________________。【阅读全文】
尊龙青草青,尊龙青草青,尊龙青草青,尊龙青草青,尊龙青草青,尊龙青草青
aom | 2019-07-20 | 阅读(2) | 评论(326)
材料一反映中国古代科技是服务农业、手工业的经验总结,讲究天人合一,这说明中国古代科技缺乏理性精神。【阅读全文】
vl7 | 2019-07-20 | 阅读(192) | 评论(692)
夏天的太阳像。【阅读全文】
mbc | 2019-07-20 | 阅读(48) | 评论(332)
一年时间下来,恒恒获得了挺有含金量的几个奖项,算是小有成就,恒爸对越来越火爆的少儿编程有了自己的思考。【阅读全文】
ym7 | 2019-07-19 | 阅读(343) | 评论(773)
试分析千泉的成因。【阅读全文】
lde | 2019-07-19 | 阅读(464) | 评论(209)
PAGE考点41两条直线的交点坐标要点阐述要点阐述1.两条直线的交点已知两直线l1:A1x+B1y+C1=0;l2:A2x+B2y+C2=0.若两直线方程组成的方程组eq\b\lc\{\rc\(\a\vs4\al\co1(A1x+B1y+C1=0,A2x+B2y+C2=0))有唯一解eq\b\lc\{\rc\(\a\vs4\al\co1(x=x0,y=y0)),则两直线相交,交点坐标为.2.方程组的解的个数与两直线的位置关系方程组的解交点两直线位置关系无解两直线无交点平行有唯一解两条直线有1个交点相交有无数个解两条直线有无数个交点重合典型例题典型例题【例】两条直线和的交点在轴上,那么的值是(  )A.–24B.6C.6D.以上都不对【答案】C【思路归纳】这类问题,一般先求出交点,让交点满足所在象限的条件,来解决相关问题.小试牛刀小试牛刀1.直线x+2y-2=0与直线2x+y-3=0的交点坐标是(  )A.(4,1)B.(1,4)C.eq\b\lc\(\rc\)(\a\vs4\al\co1(\f(4,3),\f(1,3)))D.eq\b\lc\(\rc\)(\a\vs4\al\co1(\f(1,3),\f(4,3)))【解题技巧】把求两条直线的交点问题转化为求它们所对应的方程组成的方程组的解的问题.2.经过直线l1:x-3y+4=0和l2:2x+y+5=0的交点,并且经过原点的直线的方程是(  )A.19x-9y=0B.9x+19y=0C.3x+19y=0D.19x-3y=0【答案】C【解析】由eq\b\lc\{\rc\(\a\vs4\al\co1(x-3y+4=0,,2x+y+5=0,))得eq\b\lc\{\rc\(\a\vs4\al\co1(x=-\f(19,7),,y=\f(3,7).))∴l1与l2的交点坐标为eq\b\lc\(\rc\)(\a\vs4\al\co1(-\f(19,7),\f(3,7))).∴所求的直线方程为y=-eq\f(3,19)x,即3x+19y=0.故选C.3.直线y=3x-4关于点P(2,-1)对称的直线l的方程是(  )A.y=3x-10B.y=3x-18C.y=3x+4D.y=4x+3【答案】A【解析】设M(x,y)是l上任一点,M关于P(2,-1)的对称点为M′(4-x,-2-y)在直线y=3x-4上,则-2-y=3(4-x)-4,整理得y=3x-10.故选A.【解题技巧】点关于直线的对称问题可转化为中点和垂直问题来解决.4.直线y=2x+10,y=x+1,y=ax-2交于一点,则a的值为(  )A.eq\f(1,2)B.-eq\f(1,2)C.eq\f(2,3)D.-eq\f(2,3)【答案】C【解析】由eq\b\lc\{(\a\vs4\al\co1(y=2x+10,,y=x+1,))解得eq\b\lc\{(\a\vs4\al\co1(x=-9,,y=-8,))即直线y=2x+10与y=x+1相交于点(-9,-8),代入y=ax-2,解得a=eq\f(2,3).5.两条直线和的交点在第四象限,则的取值范围是(  )A.(–6,2)B.C.D.【答案】C【解析】解出交点,由不等式组解得.6.若三条直线l1:x-y=0,l2:x+y-2=0,l3:5x-ky-15=0能构成一个三角形,求k的取值范围.考题速递考题速递1.经过直线2x-y+4=0与x-y+5=0的交点,且垂直于直线x-2y=0的直线方程是(  )A.2x+y-8=0B.2x-y-8=0C.2x+y+8=0D.2x-y+8=0【答案】A【解析】首先解得交点坐标为(1,6),再根据垂直关系得斜率为-2,可得方程y-6=-2(x-1),即2x+y-8=0.2.已知直线与的交点在轴上,则的值为()A.4B.–4C.–4或4D.与的取值有关【答案】B【解析】由得.∵交点在轴上,∴,∴.3.已知两条直线l1:ax+3y-3=0,l2:4x+6y-1=0,若l1与l2相交,则实数a满足的条件是________.【答案】a≠2【解析】l1与l2相交则有:eq\f(a,4)≠eq\f(3,6),∴a≠2.4.求过两条直线x-2y+4=0和x+y-2=0的交点P,且满足下列条件的直线方程.(1)过点Q(2,-1);(2)与直线3x-4y+5=0垂直.数学文化数学文化相交直线相交直线在实【阅读全文】
dvt | 2019-07-19 | 阅读(400) | 评论(922)
②不定时的对装修现场巡查,发现违规现象立即责令整改,必要时发放整改通知书,屡教不改的按照的违约规定处理。【阅读全文】
尊龙青草青,尊龙青草青,尊龙青草青,尊龙青草青,尊龙青草青,尊龙青草青
6uf | 2019-07-19 | 阅读(416) | 评论(822)
要有计划,有安排,有检查,有考核。【阅读全文】
w7i | 2019-07-18 | 阅读(327) | 评论(650)
 单调性学习目标重点难点1.结合实例,借助几何直观探索并体会函数的单调性与导数的关系.2.能够利用导数研究函数的单调性,并学会求不超过三次的多项式函数的单调区间.重点:利用导数求函数的单调区间和判断函数的单调性.难点:根据函数的单调性求参数的取值范围.导数与函数的单调性的关系(1)一般地,我们有下面的结论:对于函数y=f(x),如果在某区间上______,那么f(x)为该区间上的________;如果在某区间上______,那么f(x)为该区间上的______.(2)上述结论可以用下图直观表示.预习交流1做一做:在区间(a,b)内,f′(x)>0是f(x)在(a,b)上为单调增函数的__________条件.(填序号)①充分不必要 ②必要不充分 ③充要 ④既不充分又不必要预习交流2做一做:函数f(x)=1+x-sinx在(0,2π)上是__________函数.(填“增”或“减”)预习交流3做一做:函数f(x)=x3+ax-2在区间(1,+∞)上是增函数,则实数a的取值范围是______.在预习中还有哪些问题需要你在听课时加以关注?请在下列表格中做个备忘吧!我的学困点我的学疑点答案:预习导引(1)f′(x)>0 增函数 f′(x)<0 减函数预习交流1:提示:当f′(x)>0时,f(x)在(a,b)上一定是增函数,当f(x)在(a,b)上单调递增时,不一定有f′(x)>0.如f(x)=x3在区间(-∞,+∞)上单调递增,f′(x)≥0.故填①.预习交流2:提示:∵x∈(0,2π),∴f′(x)=(1+x-sinx)′=1-cosx>0,∴f(x)在(0,2π)上为增函数.故填增.预习交流3:提示:f′(x)=3x2+a,∵f(x)在区间(1,+∞)上是增函数,∴f′(x)=3x2+a在(1,+∞)上恒大于或等于0,即3x2+a≥0,a≥-3x2恒成立,∴a≥-3.一、判断或证明函数的单调性证明函数f(x)=eq\f(sinx,x)在eq\b\lc\(\rc\)(\a\vs4\al\co1(\f(π,2),π))上单调递减.思路分析:要证f(x)在eq\b\lc\(\rc\)(\a\vs4\al\co1(\f(π,2),π))上单调递减,只需证明f′(x)<0在区间eq\b\lc\(\rc\)(\a\vs4\al\co1(\f(π,2),π))上恒成立即可.1.讨论下列函数的单调性:(1)y=ax5-1(a>0);(2)y=ax-a-x(a>0,且a≠1).2.证明函数f(x)=ex+e-x在[0,+∞)上是增函数.利用导数判断或证明函数的单调性时,一般是先确定函数定义域,再求导数,然后判断导数在给定区间上的符号,从而确定函数的单调性.如果解析式中含有参数,应进行分类讨论.二、求函数的单调区间求下列函数的单调区间:(1)y=eq\f(1,2)x2-lnx;(2)y=x3-2x2+x;(3)y=eq\f(1,2)x+sinx,x∈(0,π).思路分析:先求函数的定义域,再求f′(x),解不等式f′(x)>0或f′(x)<0,从而得出单调区间.1.函数f(x)=5x2-2x的单调增区间是__________.2.求函数f(x)=3x2-2lnx的单调区间.1.利用导数求函数f(x)的单调区间,实质上是转化为解不等式f′(x)>0或f′(x)<0,不等式的解集就是函数的单调区间.2.利用导数求单调区间时,要特别注意不能忽视函数的定义域,在解不等式f′(x)>0[或f′(x)<0]时,要在函数定义域的前提之下求解.3.如果函数的单调区间不止一个时,要用“和”、“及”等词连接,不能用并集“∪”连接.三、利用函数的单调性求参数的取值范围若函数f(x)=eq\f(1,3)x3-eq\f(1,2)ax2+(a-1)x+1,在区间(1,4)上为减函数,在区间(6,+∞)上为增函数,试求实数a的取值范围.思路分析:先求出f(x)的导数,由f′(x)在给定区间上的符号确定a的取值范围,要注意对a-1是否大于等于1进行分类讨论.1.若函数f(x)=x2-eq\f(a,x)在(1,+∞)上单调递增,则实数a的取值范围是__________.2.已知向量a=(x2,x+1),b=(1-x,t),若函数f(x)=a·b在(-1,1)上是增函数,求t的取值范围.1.已知函数的单调性求参数的范围,这是一种非常重要的题型.在某个区间上,f′(x)>0(或f′(x)<0),f(x)在这个区间上单调递增(递减);但由f(x)在这个区间上单调递增(递减)而仅仅得到f′(x)>0(或f′(x)<0)是不够的,即【阅读全文】
5rr | 2019-07-18 | 阅读(431) | 评论(410)
③良好的信誉和企业形象,对企业生存竞争具有至关重要的作用。【阅读全文】
h5v | 2019-07-18 | 阅读(350) | 评论(140)
各工程指挥部和铁路公司每月要统一部署建设项目检查重点,安排统一时间,按统一要求开展检查活动,实现全员、全面、全过程的检查。【阅读全文】
fs5 | 2019-07-18 | 阅读(563) | 评论(734)
;(二)管廊施工方式;2.非开挖施工:(1)暗挖适用于:①管廊穿越现状道路,不能断交施工的情况;②管廊与现状重要管线交叉,管线无法切改的情况;(2)盾构适用于老城区内地上地下障碍物较多,不能采用传统明开挖施工的情况,如:穿越铁路编组站、古树木、存在难以拆迁的建筑、难以切改的现状管线等情况。【阅读全文】
gvm | 2019-07-17 | 阅读(379) | 评论(300)
1.概念:编码区非编码区非编码区启动子与RNA聚合酶结合位点终止子原核基因编码区非编码区非编码区启动子与RNA聚合酶结合位点外显子内含子终止子真核基因3、遗传信息、密码子、反密码子区别:遗传信息位于DNA分子的基因上面 密码子位于mRNA上面 反密码子位于tRNA上面考点四基因表达过程【阅读全文】
cnm | 2019-07-17 | 阅读(345) | 评论(105)
3、监督消杀白蚁司的服务标准(1)每天抓住重点的对小区共区域检查,发现问题立即通知问题的司负责人在一个工作日内到现场查看,要求其提供具体的整改方案,并在规定的时间内检查整改效果。【阅读全文】
共5页

友情链接,当前时间:2019-07-20

利来国际旗舰版 w66com 利来网页 利来国际w66.com 利来国际w66平台
利来国际旗舰厅怎么 利来国际ag国际厅 利来网页 w66com 利来国际家居集团
利来娱乐备用 利来娱乐网 利来国际官网 w66利来国际 利来娱乐老牌
利来国际w66网页版 w66利来国际 利来国际最老牌 利来娱乐国际 利来国际w66利来国际w66
临洮县| 繁昌县| 清涧县| 洪江市| 巴彦淖尔市| 额尔古纳市| 郎溪县| 温泉县| 新蔡县| 沂源县| 商洛市| 通山县| 景泰县| 腾冲县| 广昌县| 齐齐哈尔市| 沅陵县| 澜沧| 泾源县| 宝清县| 井陉县| 容城县| 墨脱县| 凌源市| 格尔木市| 永吉县| 洛隆县| 海晏县| 安泽县| 汉寿县| 志丹县| 临夏县| 类乌齐县| 富源县| 丹棱县| 平远县| 宽甸| 宁阳县| 教育| 含山县| 富川| http://m.85785696.cn http://m.75761832.cn http://m.80284959.cn http://m.08561123.cn http://m.99281116.cn http://m.68657103.cn